
Design and Implementation of a Unified Network Information Service

Ahmed El-Hassany∗, Ezra Kissel∗, Dan Gunter†, Martin Swany∗,
∗ School of Informatics and Computing, Indiana University, Bloomington, IN 47405

Email: {ahassany, ezkissel, swany}@indiana.edu
† Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

Email: dkgunter@lbl.gov

Abstract—A holistic view of the network is key to the
successful operation of many distributed, cloud-based, and
service-oriented computing architectures. Supporting network-
aware applications and application-driven networks requires a
detailed representation of network resources, including multi-
layer topologies, associated measurement data, and in-the-
network service location and availability information. The
rapid development of increasingly configurable and dynamic
networks has increased the demand for information services
that can accurately and efficiently store and expose the state
of the network. This work introduces our Unified Network
Information Service (UNIS), designed to represent physical and
virtual networks and services. We describe the UNIS network
data model and its RESTful interface, which provide a common
interface to topology, service, and measurement resources. In
addition, we describe the security mechanisms built into the
UNIS framework. Our analysis of the UNIS implementation
shows significant performance and scalability gains over an
existing and widely-deployed topology, service registration, and
lookup information service architecture.

I. INTRODUCTION

Networking is central to distributed, service-oriented com-

puting. Indeed the model of cloud computing derives its

name from computing resources available in the network

“cloud.” At the same time, a consequence of location inde-

pendence is considering the network as opaque with respect

to computing services. Within the network community, there

are many approaches to monitor and optimize network per-

formance. Despite many efforts to bridge the gap, network-

ing and computing services are often considered separately,

with network-aware applications or application-driven net-

works remaining an elusive goal. This work unifies network

and compute service representations, exposing actionable

network information to services, and representing services

as part of the network graph.

To improve their effectiveness, services designed to pro-

vide advanced network capabilities may benefit from knowl-

edge about the networks on which they operate. This

information may include the availability and location of

services in the network, details about the attributes of

attached devices, the characteristics of network links, and

additional context for measurements that provide a picture

of the current state of the network. Services must also be

able to register their own information about what features

and capabilities they provide in order to be discovered and

utilized.

A key goal of this work is the unification of service,

network topology, and measurement information into a

common framework with a well-defined data model and

schema representation. Describing complete topology and

measurement information in a general way is made difficult

since an understanding of multi-layer connectivity is often

desirable or even necessary to many applications that wish to

make use of distributed or cloud-based services. The task is

further complicated when dealing with lower-layer network

features such as link aggregation and protocol encapsulation

and translation between network domains (e.g., VLAN tags

and nested VLAN encoding), which is critical for perform-

ing pathfinding operations or exposing accurate network

infrastructure measurements. The recent advancements in

Software Defined Networking (SDN) have only increased

the need for an information service that provides more

complete view of the network that reflects both physical

and “virtual” topologies and provides both real-time and

historical data about network resources.

The understanding of network performance from an end-

to-end perspective is one area where a complete view of the

network, from end sites and data centers to regional service

providers and backbone networks, is a critical requirement.

In many high-performance computing environments in par-

ticular, network links may be dynamically configured using

technologies such as OpenFlow [1] and OSCARS [2] to

support high-demand flows. The collection of end-to-end

real-time network measurements, identification of bottle-

necks using metrics that relate to the detailed topology

representation, analysis of application behavior to predict

future network usage patterns, and the reconfiguration of

network paths or application behavior are all key to achiev-

ing optimal utilization and efficiency in advanced network

environments. If multiple network models are used for this

task, the problem is made more difficult; reaction to changes

in the network will be impeded, and the presence of multiple

incompatible implementations introduces an administrative

and deployment burden.

Driven by these concerns, we have developed a network

data model that extends existing services and draws upon

a number of best current practices. Our goal is to describe

2013 IEEE 10th International Conference on Services Computing

978-0-7695-5026-8/13 $26.00 © 2013 IEEE

DOI 10.1109/SCC.2013.81

224

network resources as completely as possible while remaining

flexible enough to handle future technology developments.

In this work, we present our unified network model as a

service: the Unified Network Information Service (UNIS).

UNIS brings together the notion of lookup and topology
services within a general data model and implementation.

Accessible through a common API, UNIS maintains descrip-

tions of multi-layer topologies and associated measurement

metadata along with the services running within the network,

allowing UNIS to answer complex queries about the network

with minimal overhead.

The remainder of this paper is organized as follows:

Section II provides additional background on the origins and

goals of UNIS. A number of requirements for the UNIS

service are outlined in Section III. Section IV introduces

the UNIS data model followed by a description of the API

in Section V and a discussion of security considerations in

Section VI. A performance analysis of UNIS is shown in

Section VII. Related work is covered in Section VIII and

Section IX concludes the paper.

II. BACKGROUND

Collecting and publishing service, topology, and related

measurement data on a large scale has driven major efforts

in a number of network communities. While successful

in many areas, the lack of a consistent and general data

model with associated APIs and common implementations

has left a fractured landscape of approaches often tailored to

specific use cases. Networks are frequently viewed from dif-

ferent perspectives: design, configuration and management,

monitoring, and analysis. As a result, numerous models

have been developed to represent each of these different

aspects of the network. For example, NETCONF [3] exposes

network device configuration and management information

using the YANG [4] modeling language to describe the

configurable elements. The perfSONAR [5] network moni-

toring system uses the NMWG [6] schema for describing

network characteristics and measurement metadata. Each

model and associated implementation(s) is designed and

optimized with unique properties and levels of abstraction to

serve a particular and limited view of the network, the end

result of which is that we are often left with inconsistent

and incompatible representations of the same underlying

resources.

UNIS is primarily intended to be deployed in the con-

text of the existing service-oriented multi-domain measure-

ment framework perfSONAR (Performance-focused Ser-

vice Oriented Network monitoring ARchitecture) [5], [7].

perfSONAR is deployed internationally on major research

networks, including the US Department of Energy’s ESnet,

linking all major DOE laboratories and facilities, US Inter-

net2 linking college and university campuses, Brazil’s re-

search network Rede Nacional de Ensina e Pesquisa (RNP),

Figure 1. Various Layers in Network Graphs, e.g. starting with a single
TCP link (top)

and Europe’s GÉANT2 serving over 34 million users in the

European research and education community.

perfSONAR provides services for collecting and trans-

forming measurements, with which UNIS will interoperate.

The two services that UNIS would, in the perfSONAR

framework, replace are the Lookup Service (LS) and Topol-

ogy Service (TS). In the original perfSONAR design, mea-

surement endpoints register in the LS with capabilities

and user-defined attributes, and the TS collects topology

information from the network. Thus, to perform the common

query of finding relevant measurement endpoints for a given

slice of the network, one must first locate a service using

known attributes using the LS, then query the TS for

“nearby” services, then return to the LS to find these ser-

vices, and continue alternating between the LS and TS until

all measurement endpoints are discovered. It was observed

that unifying the LS and TS into a single topologically-aware

service would improve both the efficiency and accuracy of

the results.

This seemingly minor observation leads to a fundamental

change in the model of the measurement framework. Rather

than viewing lookup services as “support” for the primary

entity of measurement points, UNIS models services, in-

cluding measurement points, as annotations on the topology
graph of the network. This in turn modifies the interaction

model to one where, using hyperlinks, the existing services

are accessed, on-demand, as a by-product of the navigation

through the topology. This traversal of multi-layer network

topologies is also facilitated through the UNIS data model.

Networks are obviously representable as graphs, a fact

that underlies the understanding of topology in both the

perfSONAR and UNIS implementations. There are many

graph representations of networks and services, at many

different granularities. The problem lies in how to represent

these various aspects in a single model. The graph of

processing elements is different than that of the graph of

physical network paths. The network graph at “Layer 2”

of the Internet model (e.g., Ethernet) is distinct from the

graph at “Layer 3” (e.g., IP.) As shown in Figure 1, we

can consider the “overlay network” of a TCP (Layer 4)

connection between two nodes as an edge in the graph, and

simultaneous consider the Layer 3 (L3, hereafter) topology

that underlies this connection, and the L2 topology that

underlies that. As described in Section IV, UNIS unifies

225

these layers through the concept of a vertical relation,

allowing for easy traversal of complex topologies at different

levels of detail and layers of the network stack.

III. REQUIREMENTS

The requirements of any monitoring system stem from the

goal of delivering useful views of the system’s performance

to the network operators, network managers, distributed

project participants, and end users with minimal perturbation

of that system. To this end, we highlight the following

requirements:

R1. Real-time discovery and navigation of all relevant

resources within a domain or network, or along a path.

It should be not only possible, but easy, to build a

client that can query and operate on network topology

and measurements in order to monitor, configure,

analyze or optimize the network.

R2. Handle dynamically changing object state. Dynamic

Circuit Networks (DCNs) and SDNs, important com-

ponents of modern networks, are both highly dynamic.

In DCNs and SDNs circuits and flows can be created

and terminated at any time. Creating, updating, and

terminating circuits or flows must be reflected in UNIS

in real time.

R3. Provide security mechanisms that work in a multi-
domain deployment. Networks can be very large and in

more than one administrative domain. Users, projects,

etc. need to understand detailed performance across

these domains. Thus, security credentials must be

federated across multiple domains.

R4. Provide extensibility to new topology elements. There

are many types of devices in a network, both virtual

and physical. New types of devices occur, from a

global perspective, continuously. Without any central-

ized reconfiguration, UNIS should be able to present

new topology elements in a standard format, in relation

to the overall topology.

R5. Provide distributed configuration management.
Changing devices and services configurations in

the network can potentially change the network

topology. UNIS should be able to provide distributed

configuration management for network services and

devices.

R6. Integrate with existing perfSONAR framework. The

UNIS should be able to, with protocol translators,

replace the Lookup Service and Topology Service

functions in existing perfSONAR deployments.

R7. Leverage web architecture by following RESTful prin-
ciples. Efficiency and interoperability is enhanced by

following the principles underlying the web and most

large web-based services, in particular describing sys-

tem objects as resources and using the HTTP verbs

appropriately.

Resource

NetworkResource

Network

Topology

Path

Domain

Service

Node

Port

Link

0..*
1

aggregation inheritance

Metadata

Figure 2. UNIS Object Model. All objects inherit from Resource, the
objects in the grey box inherit from NetworkResource and are contained
in a Topology.

R8. Scale to extremely large systems. We must consider

both per-instance scalability and distribution across

many instances, taking advantage of locality for ef-

ficiency.

R9. Represent the multi-layer topology of the network
with different levels of abstraction and granularity.
Networks can be represented in extreme detail down

to the physical infrastructure, or simplified to a basic

overlay view, depending on the context. UNIS must

represent all views in a single framework. .

In the following sections, we highlight elements related

to these requirements with the notation 〈Rn〉, where n is

the requirement number.

IV. DATA MODEL

In this section we present the UNIS data model. One of

the key tenets of UNIS has been to use the same basic

elements for network resources such as Node, Port, and

Link, and to extend them as appropriate with layer specific

attributes 〈R4〉. These entities at different layers of the

network stack are described along with their relationships

both horizontally - L2 Port connected to L2 Port via L2

Link, and vertically - L3 Port atop L2 Port. This model

then captures each of the logical components traversed

as data flows through a network, and that ensemble can

be referred to directly via another UNIS element, Path,

abstracting the details when appropriate.

A UML diagram of the data model is shown in Figure 2.

In UNIS, the physical and virtual devices, network services

and the metadata about measurements are modeled as re-
sources and connections between resources are modeled as

relations. The remainder of this section describes these two

object types.

A. Resources

A resource is an abstract type with time-varying state, and

a location given as a URL. Each resource is uniquely and

226

globally identifiable and addressable by its URL. Network

resources include: hosts, routers, network interfaces, disks,

memory, and even on-chip networks for multi-core proces-

sors.

The abstract base class for all resources, Resource,

contains a locally unique identifier, URL, schema (type)

URL, and the timestamp of the last change in the resource.

Thus, all resources must be typed and uniquely identified,

and must be timestamped.

A Resource has only three direct subclasses:

• NetworkResource is the abstract base class of all

other objects. It adds additional attributes for naming,

describing, and locating an actual resource, that are

generally applicable to any object on the network.

• Topology is logical collection of related network

resources based on a criteria defined by the user.

• Metadata describes the type of measurement data

(the event type), the resource(s) being measured (the

subject of the measurement), and the particular param-

eters of the measurement. The subject is a hyperlink to

the resource(s) being measured 〈R7〉.
The leaves of the class hierarchy model the specific

types of objects found in modern networks. A Node is

generally a device connected to (or in) the network, that

may be a physical machine or group of devices that

connect at a single point. A Port connects a node to

other network resources, via a Link (or Path.) Both

Ports and Nodes may have forwarding rules. A Link
is a unidirectional or bidirectional connection between

two Port objects. A Path is an ordered list of con-

nected NetworkResources, which can also be unidi-

rectional or bidirectional. A Domain is a collection of

NetworkResources that are part of an administrative

domain. A Service describes a certain capability being

offered by a NetworkResource. Finally, a Network is

a collection of connected NetworkResources. To enable

recursive composition, a Network can look like a Node
with a list of Ports that connects it to other Networks.

B. Relations

The connectivity of the network of resources is expressed

in a flexible and extensible form using relations. Every

Resource has a list of relations. A single relation expresses

a one-to-many relationship as a key/value pair, where the

key is the type of the relation and the value is a list of

hyperlinks to other network resources 〈R7〉. This allows

definition of one-to-one and one-to-many relations (many-

to-many relations can be decomposed to two one-to-many

relations).

For example, an IPv4 port has a relation “over” with the

URL of the UNIS resource that represents the underlying

Ethernet port 〈R9〉.
The type of a relation can be any URN, allowing for

extensibility 〈R4〉. For interoperability it is recommended to

Domain Domain

Net
wo
rk

Topology

Service Service

Node Node Node

Node Node
Port

Port

Port
Port Port

Port
Port

Port

PortPort

Link

Link

Port
Port

Links

Port Port

Port

rt

k
ort

Port

Port

ortt
Po

Path

Figure 3. UNIS topology example

use a set of relation types is defined by the Network Markup

Language (NML) working group within the Open Grid

Forum [8]. Some of the containment (“has a”) relations from

NML are included in the base UNIS model, as indicated

by the aggregation arrows, such as between Node and

Topology, in Figure 2.

Relations can be used to tie together multiple representa-

tions for the same physical resources. For example, a set of

load-balancing servers running a web service appear as one

server to the clients. In UNIS, each server can be represented

as a Node. An additional Node represents the clients’ view

of the load-balanced servers as a single server. The higher

level Node links the other nodes by a specific relation,

implementedBy, indicating that this Node is an abstract node

for multiple servers 〈R7〉 〈R9〉.
C. Example

An example of UNIS model applied to a simple network

topology is shown in Figure 3. Here, two servers running

a service (e.g., a data transfer service), each in a separate

domain. The servers are connected to their local switch,

which are connected at layer 3 via routers; both the switches

and routers are modeled as Nodes. The endpoints and

routers are contained in a Path. Any subset of the Nodes,

for example the routers, could be considered a Network.

Notice that Port and Link objects can be used at any of the

traditional network “layers”, both to connect to peers at the

same layer and to connect adjacent nodes on the stack.

V. UNIS API

In this section we present the design of the UNIS API

and discus the implications of its RESTful implementation

for our requirements.

A. Access API

The UNIS API is designed using the REST Architectural

Style [9], thus leveraging widely deployed HTTP infrastruc-

ture and related standards 〈R7〉.
Every Resource in the UNIS data model described

above has a URL that identifies it and a uniform interface

to manipulate it. The HTTP methods GET, POST, PUT and

DELETE are used to manipulate resources. UNIS replaces

purely RESTful dynamic discovery of a few of its core

227

Action Verb Noun Description
Insert POST /{resource-type} Creates

new re-
source(s).

List GET /{resource-type} Return all
resources.

Get GET /{resource-type}/{id} Return the
resource
representa-
tion

Update PUT /{resource-type}/{id} Update the
specified
resource.

Delete DELETE /{resource-type}/{id} Delete the
specified
resource.

Table I
UNIS REST API.

operations with pre-defined URL patterns, which are shown

in Table I. In these patterns, the resource-type is any of

the subclasses of Resource except NetworkResource
(see Figure 2): node, port, link, path, service, domain,

network, topology, or metadata. The id is a locally unique

identifier assigned when the resource is first created.

B. Support for multiple representations

UNIS uses HTTP content negotiation [10] to support

multiple representations. Each UNIS (HTTP) request and

response is annotated with the Content-type header to

indicate the data format of the carried message. Requests

and responses use the Accept header to indicate the data

formats supported by UNIS and the client. This gives the

potential for UNIS to adapt more representations for its

model 〈R4〉.
To meet our scalability 〈R8〉 and real-time 〈R1〉 require-

ments, we needed to minimize the serialization, deserializa-

tion, and data transmission times. We chose JSON [11] as a

native format for UNIS because it is universally supported

and on par with other text formats in size and processing

time. In general JSON is considerably more compact than

XML, for example for a large UNIS topology representing

much of ESnet the JSON representation is 811KB whereas

a 1:1 equivalent XML representation is 1036KB, or al-

most 30% larger. An additional important factor was the

availability of several highly scalable NoSQL “document-

oriented” databases (e.g., MongoDB, CouchDB, OrientDB,

RavenDB) that use JSON to access and model data; see

Section VII for a comparison with a far less performant

XML database (the one currently used by perfSONAR). The

other major advantage of using JSON is that it is the de
facto standard web interchange format 〈R7〉, so users can

easily build web-based applications that consume UNIS data

objects to visualize network topologies, graph performance

measurement time-series, etc. For more efficient encoding

and object traversal, UNIS supports the binary encoded

JSON format, BSON [12].

C. Caching

UNIS is designed to take advantage of HTTP caching

mechanisms to reduce the latency of frequently repeated

requests 〈R1〉, 〈R8〉. In order to make UNIS HTTP cache-

friendly, each response by UNIS is annotated with the last

modification time, an entity tag (ETag) [10], and possibly

an expiration time (if the network resource has a defined

“lifetime” attribute). The client, or any proxy, can use the

ETag in downstream queries to see whether its cached

version of the resource can be used without fetching a new

resource representation, thus reducing network bandwidth

and load on the server.

D. HTTP Streaming

With the increasing use of SDN to dynamically control

the network topology, changes in network state can be very

frequent. Frequent polling of UNIS for changes in network

resources can be expensive due to per-connection overhead;

UNIS gives the clients the ability to avoid this overhead

by re-using a single connection to subscribe to multiple

updates for selected resource(s). This is done using standard

HTTP mechanisms. When the UNIS client adds the HTTP

Keep-alive header to a request, UNIS will automatically

keep the TCP connection open for multiple updates 〈R8〉.

E. Recording changes over time

Network configurations change over time and those

changes might affect the behavior of the network. Keeping

a historical record of network topology changes helps per-

formance prediction, trend analysis, and anomaly detection.

To enable these analyses, UNIS adds a timestamp to each

change in the resources and allows users to retrieve old

representations of the network resources 〈R2〉. The total

number of historical copies of the resources stored in the

backend database is a run-time parameter. Timestamping

resource states is also a form of versioning that can aid

clients in achieving eventual consistency [13].

F. Example

An example of using UNIS is in the context of a dis-

tributed configuration management service 〈R5〉. In this

scenario, various network services are registered in UNIS

as resources, and each service representation is annotated

with its configuration. A network administrator or authorized

configuration agent needs only to update the configuration in

UNIS while each service can either subscribe or poll UNIS

for configuration changes. If the service detects a change,

it may then update or merge its running configuration with

the current resource state in UNIS.

228

VI. SECURITY CONSIDERATIONS

The dissemination of topology and network information

in an open and unencumbered fashion can have a number

of benefits. In R&E network environments, services such

as OSCARS [2] take advantage of the perfSONAR LS and

TS to enable the free exchange of topology, location, and

control plane information for dynamic circuit provisioning

between peering domains. While access to both topology

and measurement data may be restricted to well-defined

R&E network address space using firewalls or other external

means, these widely used information services have typi-

cally not included robust authentication and authorization

(AuthN/AuthZ) or accountability mechanisms. As networks

continue to grow more dynamic and abstracted, and pro-

grammable network provide increased potential for disrup-

tion, the addition of security features for defining access

control policy to known and trusted identities is a key

challenge to meet in providing a next-generation information

service. 〈R3〉
To meet this challenge, the UNIS implementation makes

use of the well-known and widely implemented public-key

infrastructure (PKI) for the management of digital certifi-

cates using the X.509 standard. In this scheme, identity

is determined via public keys, which are protected by an

associated private key. Digital certificates map public keys

with a unique entity and may be issued by a certificate

authority (CA). These CAs act as trust anchors and can

verify the validity of certificates. A typical UNIS deployment

may store a number of CA certificates that correspond to

trusted organizations or federated entities.

UNIS uses TLS/SSL to provide secure connections from

peering UNIS instances or other clients. Connection requests

over a secure port are required to present a client certificate

to identify the remote peer. In this manner, basic authenti-

cation of requests may be achieved by verifying the client

certificate has been issued by a trusted CA. The exchange

of CA certificates between running UNIS instances allows

for the authentication of users from peering domains.

Beyond certificate-based authentication, UNIS integrates

the ABAC implementation and supporting libraries from

ISI [14] to provide an authorization mechanism known as

attribute-based access control. ABAC relies on attribute cer-

tificates (i.e., credentials) to map identities to specific access

roles, and the ABAC decision engine generates a proof graph

to determine if a given identity has rights to access or modify

a given resource in UNIS. We have developed a modular

authorization framework around ABAC in UNIS that allows

for the expression of any number of access policies in an

extensible manner. For example, network resources in UNIS

may be restricted to a set of identities based on specific,

well-defined properties of each resource, and the given

authorization module would provide new REST endpoints

for managing the addition and deletion of user credentials

and roles. In effect, this allows UNIS to maintain a complete

representation of the network while providing a number of

customized views for privileged identities.
The authorization approach in UNIS also allows for the

delegation of access privileges to particular entities through

attribute certificate management. While the details are be-

yond the scope of this paper, the ability to grant a remote

entity fine-grained access to existing roles is a powerful

feature when considering in the scope of complex peering

arrangements and multiple user scenarios. Delegated roles

may also have lifetimes that limit access over predetermined

windows. Such temporary credentials are useful when en-

abling short-lived services that require access to specific

resources within UNIS.
Finally, we note that many existing distributed service-

oriented frameworks, including perfSONAR and its authenti-

cation service, make use of AuthN/AuthZ mechanisms based

on the exchange and management of X.509 certificates. This

fact allows for the development of modules within the UNIS

security framework to enable interoperability with existing

architectures.

VII. ANALYSIS

In this section we present the performance of UNIS for

several basic operations and compare these results with the

same operations using an instance of the perfSONAR TS.

We limited our tests to perfSONAR TS because it shares

most of the code with perfSONAR LS and both uses the

same database backend. The results show that UNIS is

consistently at least 10 times faster, and more scalable.

A. Test Environment
We used the same server of all our experiments. Our

server has 8GB RAM, a quad-core Intel Core i7 processor,

and a 32GB SSD hard drive. The clients are virtual machines

(VMs) with close proximity to the server (round trip time

(RTT) < 4ms). Each client has one virtual CPU core and

2GB RAM.
UNIS is implemented using the non-blocking web server

framework Tornado [15] and uses MongoDB [16] as a

backend database. perfSONAR services are implemented

using Perl and uses Berkeley DB XML [17] as its backend

database.

B. Inserting a network resource
In the first experiment, we test the time to insert a single

network resource to both TS and UNIS. We choose to insert

a basic IPv4 port. Figure 4 shows the time per client for 1,

2, 4, 8, and 16 clients for UNIS and 1, 2, and 4 clients for

TS. For up to 4 clients, UNIS ran at one to two orders of

magnitude faster. Above 4 clients, a bug in the TS database

implementation, related to DB locking, caused it to fail to

respond with the error message ”Couldn’t open database”.

Clients serialized on an exclusive write lock also explains

the large variation in performance of TS for 4 clients.

229

0

1000

2000

3000

4 8 12 16
Number of clients

In
se

rt
tim

e
(m

s)

system

perfSONAR TS

UNIS

Figure 4. Comparison of time for up to 16 concurrent clients to insert
one network resource into a UNIS and perfSONAR topology.

40

80

120

160

4 8 12 16
Number of clients

Up
da

te
 tim

e
(m

s)

system

perfSONAR TS

UNIS

Figure 5. Comparison of time for up to 16 concurrent clients to update
one resource in a UNIS and perfSONAR topology.

C. Updating a network resource

Our second experiment was to test updating the repre-

sentation of a network resource. We chose to change the IP

address of a port that was previously inserted by each client,

so that each client updated a different network resource.

Figure 5 shows that UNIS was roughly 10x faster than TS

for up to 4 client and that, again, the TS implementation

failed with more than 4 clients.

D. Querying network resources

Our third experiment was to test finding a network re-

source by its URN. We chose to query for a port that was

previously inserted by each client, so that each client is a

querying a different network resource. Figure 6 shows that

UNIS was roughly 10x faster, and also far less variable,

than TS. Unlike in the insert and update experiments, the

TS service was able to handle queries from 16 concurrent

clients.

In summary, we found that UNIS is a large improvement

in terms of performance over the currently deployed perf-

SONAR implementation. We believe this is due mostly to

the difference in performance between MongoDB and the

Berkeley DB XML back-end; the limitations of the latter

0

200

400

600

800

4 8 12 16
Number of clients

Qu
er

y t
im

e
(m

s)

system

perfSONAR TS

UNIS

Figure 6. Comparison of time for up to 16 concurrent clients to query
one element in a UNIS and perfSONAR topology.

are also reported in [18].

VIII. RELATED WORK

There are a number of distributed and service-oriented

architectures that share common goals with UNIS. In Sec-

tion II we have described the evolution of UNIS as in-

spired by early work in the perfSONAR [5] efforts. Other

measurement and network description frameworks include

MonALISA [19], the Network Weather Service (NWS) [20],

[21], and the Monitoring and Discovery Service (MDS) [22].

The focus of both MonALISA and the NWS is on system

monitoring and the collection of measurement data while

relying on a rudimentary topological view of the network

that include basic reachability and connectivity information.

Both MonALISA and the MDS include lookup service

features for service discovery and registration, but are lim-

ited in scope with a bias towards grid environments. For

example, the MDS is the Grid Information Service (GIS)

in the Globus Toolkit [23], and while it accurately and

completely describes grid compute nodes (CPU and number

of cores, memory, disk, etc.), it lacks any features to describe

complete networks or the interconnection between end hosts.

In contrast, UNIS aims to provide a general data model that

subsumes each of the capabilities just described and exposes

them through common interfaces.

UNIS is also not alone among the many efforts to

define network data models. NMWG [6] is used within

perfSONAR, and UNIS has extended and re-engineered

the schema into a more complete and efficient model that

moves beyond classification of network characteristics and

measurement methodologies. The Network Description Lan-

guage [24] makes use of the Resource Description Frame-

work (RDF), and while generic and expressible, there are

efficiency impacts in parsing the verbose network represen-

tations using the RDF ontology. The Common Information

Model (CIM) [25] models networks; but CIM is focused on

the needs of enterprises to manage a large set of devices and

therefore adds much complexity needed to exploit divergent

230

capabilities, which is irrelevant for understanding perfor-

mance and in practice conflicts with UNIS requirements

(see Section III) for independent extensibility 〈R4〉, RESTful

operation 〈R7〉, and consistent multi-layer representation

〈R9〉. Other related work in this area includes the Resource

and Service Description (RSD) project [26] and Remos [27].

IX. CONCLUSION

In this paper, we presented our network information

service as a unification for perfSONAR TS and LS services.

UNIS integrates well with and takes advantage of the

existing modern web architecture. UNIS offers an exten-

sible model for network topology and measurements as a

service, this enables designing smarter and possibly faster

application-driven networks.
We showed how UNIS provides many advantages over

the traditional perfSONAR services – such as, providing a

security model, linking the measurement metadata to the

network topology, keeping historical record of changes in

the network, and leveraging web caching. Our experimental

results show that UNIS is at least 10 times faster when

compared head to head with perfSONAR services.
As future work, we would like to leverage UNIS’s ser-

vices for multi-layer multi-domain pathfinding in dynamic

networks such as OSCARS and for complex service creation

in GENI [28]. Also, we are interested in the topology-aware

analysis of network measurements.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner,
“Openflow: enabling innovation in campus networks,”
SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp.
69–74, Mar. 2008. [Online]. Available: http://doi.acm.org/10.
1145/1355734.1355746

[2] Esnet oscars. [Online]. Available: http://www.es.net/services/
virtual-circuits-oscars/

[3] R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman,
“Network Configuration Protocol (NETCONF),” RFC 6241
(Proposed Standard), Internet Engineering Task Force, June
2011. [Online]. Available: http://www.ietf.org/rfc/rfc6241.txt

[4] M. Bjorklund, “YANG - A Data Modeling Language for the
Network Configuration Protocol (NETCONF),” RFC 6020
(Proposed Standard), Internet Engineering Task Force, Oct.
2010. [Online]. Available: http://www.ietf.org/rfc/rfc6020.txt

[5] A. Hanemann, J. Boote, E. Boyd, J. Durand, L. Kudarimoti,
R. Lapacz, M. Swany, S. Trocha, and J. Zurawski, “Perf-
SONAR: A service oriented architecture for multi-domain
network monitoring,” in In Proceedings of ICSOC 2005,
December 2005.

[6] J. Zurawski, M. Swany, and D. Gunter, “A scalable framework
for representation and exchange of network measurements,”
in TRIDENTCOM, 2006.

[7] perfsonar. [Online]. Available: http://www.perfsonar.net/
[8] Network mark-up language working group (nml-wg).

[Online]. Available: http://www.gridforum.org/gf/group info/
view.php?group=nml-wg

[9] R. T. Fielding, “Architectural styles and the design of
network-based software architectures,” Ph.D. dissertation,
2000, aAI9980887.

[10] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee, “Hypertext Transfer Protocol
– HTTP/1.1,” RFC 2616, Internet Engineering Task Force,
June 1999, updated by RFCs 2817, 5785, 6266, 6585.
[Online]. Available: http://www.ietf.org/rfc/rfc2616.txt

[11] “Json,” http://json.org.
[12] “Bson,” http://bsonspec.org.
[13] M. Shapiro and B. Kemme, “Eventual consistency,” in Ency-

clopedia of Database Systems, 2009, pp. 1071–1072.
[14] Deterlab ABAC: Attribute-based access control. [Online].

Available: http://abac.deterlab.net/
[15] Tornado web server. [Online]. Available: http://www.

tornadoweb.org/
[16] Mongodb. [Online]. Available: http://www.mongodb.org/
[17] Oracle berkeley db xml. [Online]. Available: http://www.

oracle.com/technetwork/products/berkeleydb
[18] X. Xiang and B. Plale, “Performance evaluation of mysql 5.0

and berkeley db xml as a grid resource information manager
(grim) with a benchmark/workload,” Indiana University -
Bloomington, School of Informatices and Computing, Tech.
Rep. TR645, Feb 2007.

[19] I. Legrand, H. Newman, R. Voicu, C. Cirstoiu, C. Grigoras,
M. Toarta, and C. Dobre, “Monalisa: An agent based,”
Dynamic Service System to Monitor, Control and Optimize
Grid based Applications, CHEP, 2004.

[20] R. Wolski, N. T. Spring, and J. Hayes, “The network weather
service: A distributed resource performance forecasting ser-
vice for metacomputing,” Journal of Future Generation Com-
puting Systems, vol. 15, pp. 757–768, 1999.

[21] M. Swany and R. Wolski, “Representing dynamic perfor-
mance information in grid environments with the network
weather service,” in Cluster Computing and the Grid, 2002.
2nd IEEE/ACM International Symposium on, May, pp. 48–48.

[22] S. Fitzgerald, “Grid information services for distributed
resource sharing,” in Proceedings of the 10th IEEE
International Symposium on High Performance Distributed
Computing, ser. HPDC ’01. Washington, DC, USA: IEEE
Computer Society, 2001, pp. 181–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=874077.876489

[23] I. Foster and C. Kesselman, “Globus: A metacomputing in-
frastructure toolkit,” International Journal of Supercomputer
Applications, vol. 11, pp. 115–128, 1996.

[24] J. van der Ham, P. Grosso, R. van der Pol, A. Toonk, and
C. de Laat, “Using the network description language in optical
networks,” in Integrated Network Management, 2007. IM ’07.
10th IFIP/IEEE International Symposium on, 21 2007-yearly
25 2007, pp. 199 –205.

[25] I. Distributed Management Task Force. Common information
model (cim). [Online]. Available: http://dmtf.org/standards/
cim

[26] M. Brune, A. Reinefeld, and J. Varnholt, “A resource de-
scription environment for distributed computing systems,”
in Proc. 8th Intern. Sympos. High-Performance Distributed
Computing HPDC99. IEEE Computer Society, 1999, pp.
279–286.

[27] B. Lowekamp, N. Miller, D. Sutherland, T. Gross,
P. Steenkiste, and J. Subhlok, “A resource query interface
for network-aware applications,” in High Performance Dis-
tributed Computing, 1998. Proceedings. The Seventh Inter-
national Symposium on, Jul, pp. 189–196.

[28] Global environment for network innovation. [Online].
Available: http://geni.net.

231

