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Abstract
In distributed applications, the transmission of non-contiguous data
structures is greatly slowed down by the need to serialize them into
a buffer before sending. We describe Compact Normal Forms, an
API that allows programmers to explicitly place immutable heap
objects into regions, which can both be accessed like ordinary data
as well as efficiently transmitted over the network. The process of
placing objects into compact regions (essentially a copy) is faster
than any serializer and can be amortized over a series of functional
updates to the data structure in question. We implement this scheme
in the Glasgow Haskell Compiler and show that even with the
space expansion attendant with memory-oriented data structure
representations, we achieve between ×2 and ×4 speedups on fast
local networks with sufficiently large data structures.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications – Concurrent, Distributed, and
Parallel Languages

Keywords Serialization, Message Passing, Regions

1. Introduction
In networked and distributed applications it is important to quickly
transmit data structures from one node to another. However, this
desire is often in tension with the usual properties of high-level
languages:

• Memory-safe languages such as Haskell or Java support rich, ir-
regular data structures occupying any number of non-contiguous
heap locations.

• In contrast, network interface cards (NICs) perform best when
the data to be sent resides in a single contiguous memory region,
ideally pinned to physical memory for direct memory access
(DMA).

Thus, while efficiently sending byte arrays does not pose a prob-
lem for high-level languages, more complex data structures require
a serialization step which translates the structure into a contiguous

buffer that is then sent over the network. This serialization process
is a source of overhead and can be the limiting factor when an ap-
plication runs over a fast network.

In response to this problem, there have been several attempts
to engineer runtime support enabling high-level languages to send
heap representations directly over the network: e.g. in Java [9], or
even in distributed Haskell implementations [19]. However, these
approaches rarely manage to achieve zero-copy data transmission,
and complications abound with mutable and higher order data.

In this paper, we propose a new point in the design space: we
argue it’s worth adopting the same network representation as the
native in-memory representation, despite the cost in portability and
message size. We show that even when message size increases by a
factor of four, on a fast local network—like those found in data
centers or supercomputers—end-to-end performance can still be
improved by a factor of two.

In effect, the problem of fast network transfer reduces to the
problem of arranging for heap data to live in contiguous regions.
While region type systems [2, 12, 30] could address this problem,
we implement a simpler solution which requires no changes to the
type system of Haskell: let programmers explicitly place immutable
data into compact regions or compact normal form (CNF). Objects
in these regions are laid out in the same way as ordinary objects:
they can be accessed in the same way from ordinary Haskell code
and updated in the standard manner of purely functional data struc-
tures (the new nodes appended to the compact region). Further-
more, as the data in question is immutable and has no outgoing
pointers, we side step the normal memory management problems
associated with subdividing the heap (as in generational and dis-
tributed collectors). Finally, given any heap object we can quickly
test for membership in a compact region, from which we can also
deduce whether it is fully evaluated, a question which is often asked
in a lazy language like Haskell.

Adding CNF to Haskell also solves two other, seemingly unre-
lated problems:

• Permanent data residency. In long-running programs, there may
be some large data structures which never become garbage.
With a standard generational garbage collector, these data struc-
tures must still be fully traversed upon a major GC, adding ma-
jor overhead. In these cases, it is useful to promote such data to
an immortal generation which is never traced.

• Repeated deepseq. Even setting aside serialization, there are
other reasons to fully evaluate data, even in a lazy language.
For example, in parallel computation settings, it is important
to ensure that computational work is not accidentally offloaded
onto the wrong thread by transmission of a thunk.
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This hyperstrict programming in Haskell is done with the
NFData type class, which permits a function to deeply evalu-
ate a structure to normal form. However, deepseq (deepseq x)

demonstrates a problem with the approach. The second deepseq

should cost O(1), as the data is already in normal form. How-
ever, as there is no tracking of normal forms either in the type
system or the runtime, Haskell’s NFData methods must perform
repeated traversals of data, which can easily lead to accidental
increases in the asymptotic complexity of an algorithm.

Once data is compacted in a CNF, repeated deepseq becomes O(1),
and the garbage collector likewise never needs to trace the data
again. More generally, we make the following contributions:

• We propose a basic API for CNFs, specify what invariants it
enforces and formally describe some of its sharing properties.
Our default API does not preserve sharing when copying data
structures into a compact region; however, at the cost of a factor
of two, sharing can be preserved by tracking copied nodes in an
auxiliary data structure (e.g., a hash table).

• We implement CNFs by modifying the Glasgow Haskell Com-
piler (GHC) and runtime and compare CNF to accepted, high-
performance serialization approaches for Haskell. We demon-
strate while that Haskell serialization is competitive with well-
optimized alternatives (e.g. the Oracle Java virtual machine),
the CNF approach is radically faster. Further, we quantify how
this serialization advantage translates into faster message pass-
ing or remote procedure calls (Section 5.7), including when
used in conjunction with remote direct memory access.

• We show that CNF can also improve garbage collection: both
in reducing GC time and scaling to large heaps (Section 5.5).
CNFs offer a middle ground that enables some application
control of heap storage without compromising type safety or
requiring major type-system changes.

While the specific low-level techniques applied in this paper are not
novel, we hope to show that with this work, distributed functional
programming can become much more efficient than it has been.
This is especially apt, as in recent years there has been extensive
work on distributed Haskell frameworks [10, 20], which depend on
slow serialization passes to send data.

2. Motivation: Serialization and its Discontents
Consider the simple problem of building and then sending a tree
value to another process:

sendBytes sock (serialize (buildTree x))

In general, serializing the tree, that is, translating it into some well-
defined format for network communication, is unavoidable, since
the receiving process may be written in a completely different
language, by a completely different set of people, in which case
a portable interchange format is necessitated.

However, there are some situations where endpoints may be
more closely related. If we are sending the tree to another thread in
the same process, no serialization is necessary at all: just send the
reference! Even in a distributed computation setting, it is relatively
common for every process on the network to be running the same
binary. We can summarize the possible situations by considering
who we are sending to:

1. Another thread in the same process;

2. Another process in the network, trusted to be running the same
binary;

3. A trusted endpoint in the network, which may not run the same
binary; or perhaps

4. An untrusted endpoint across the network.

Most serialization and networking libraries are designed for the
worst case—scenario 4—and thus miss out on substantial opportu-
nities in cases 2 and 3. In Haskell, for example, the best option to-
day is to use a binary serialization library such as binary or cereal.
These libraries are very efficient examples of their kind, but by their
nature they spend substantial time packing structures into an array
of bytes and then unpacking them again on the other side.

Why should we care about scenarios 2 and 3? While scenario 4
covers general applications interacting with the Internet, these mid-
dle scenarios represent applications running inside of supercomput-
ers and data-centers composed of many nodes. In scenario 2, and
possibly scenario 3, we can consider sending a representation that
can be used immediately on the other side, without deserialization.
High-performance networking hardware that provides remote di-
rect memory access (RDMA), makes this scenario even more ap-
pealing, as it can directly place objects in remote heaps for later
consumption without the involvement of remote processors. Thus,
we have this principle:

PRINCIPLE 1. To minimize serialization time, in-memory repre-
sentation and network representation should be the same.

Even if we are willing to accept this principle, however, there
are still some difficulties.

2.1 Problem 1: Contiguous In-Memory Representation
By default, data allocated to the heap in a garbage collected lan-
guage will not be in a contiguous region: it will be interspersed with
various other temporary data. One direct solution to this problem
might be to replace (serialize (buildTree x)) from the earlier
example code with an alternate version designed to produce a con-
tiguous version of the tree, which could be immediately consumed
by sendBytes:

sendBytes chan (buildTreeToRegion x)

The first problem with this approach is that its anti-modular if
buildTree must be changed to yield buildTreeToRegion. The pro-
ducer code may be produced by a library not under the control of
the programmer invoking sendBytes—thus it is unreasonable to ex-
pect that the producer code be modified to suit the consumer. Nor
is it reasonable to expect a program analysis to identify buildTree

as producing network-bound data, because it is impossible to de-
termine, in general (at all allocation sites) what the ultimate desti-
nation of each value will be. Besides, most high-level languages do
not have the capability to region-allocate, even if we were willing
to change the producer code.

A region-based type system with sufficient polymorphism could
solve the modularity problem: a function identifies what region
the returned value should be allocated into. But, while there have
been languages that have this capability and expose it to users [12],
widely used functional and object oriented languages do not. In
fact, even MLKit [30]—which implements SML using regions and
region-inference—does not expose region variables and letregion

to the programmer. Thus they cannot write buildTreeToRegion and
cannot guarantee that the result of builtTree ends up as the sole
occupant of a distinct region.

Due to these drawbacks, we instead propose much simpler
scheme: to simply copy the relevant data into the contiguous re-
gion. The key principle:

PRINCIPLE 2. Copying is acceptable, as long as the copy is amor-
tized across all sends of the same data.

In fact, when a copying garbage collector would be used, live
data structures would have been copied anyway. We can do the copy
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once, and then avoid any further copies (by the garbage collector or
otherwise.)

2.2 Problem 2: Safety
Once your data is in a contiguous, compact region, one would hope
that it would simply be possible to send the entire region (without
any checking) when attempting to send a pointer to an object in the
region.

However, such an operation is only safe if the region, in fact,
contains all of the reachable objects from a pointer. If this has been
guaranteed (e.g., because a copy operates transitively on reachable
objects), there is yet another hazard: if mutation is permitted on
objects in the compact region, then a pointer could be mutated to
point out of the region.

In fact, an analogous hazard presents itself with garbage col-
lection: if a compact region has outbound regions, it is necessary
to trace it in order to determine if it is keeping any other objects
alive. However, if there are no outgoing pointers and the data is im-
mutable, then it is impossible for a compact region to keep objects
outside of it alive, and it is not necessary to trace its contents. To
summarize:

PRINCIPLE 3. Immutable data with no-outgoing pointers is highly
desirable, from both a network transmission and a garbage collec-
tion standpoint.

3. Compact Normal Form
Our goal with CNFs is to organize heap objects into regions, which
can then be transmitted over the network or skipped during garbage
collection. Concretely, we do this by representing a pointer to an
object in a compact region with the abstract type Compact a. Given
a Compact a, a pointer to the actual object can be extracted using
getCompact:

newtype Compact a
getCompact :: Compact a → a

How do we create a Compact a? Based on the properties of
compact regions we have described so far, any such operation
would need to take a value, fully evaluate it, and copy the result into
a contiguous region. We represent the types which can be evaluated
and copied in this way using a type class Compactable, similar
to an existing Haskell type class NFData which indicates that a
type can be evaluated to normal form. Unlike NFData, Compactable
expresses the added capability to send some data over the network.
Most common types are compactable, e.g. Bool or Maybe a (if a is
Compactable), but mutable types such as IORef a are not.

class NFData a ⇒ Compactable a

We might then define a function with this type:

newCompact :: Compactable a ⇒ a → IO (Compact a)

This function creates a new region and copies the fully evaluated
a into it. However, if we want to apply a functional update to this
tree, we may want to specify the already existing compact region
so we can reuse any already compacted shared data. To do this, we
can decompose newCompact into two functions:

mkCompact :: IO (Compact ())
appendCompact :: Compactable a

⇒ a → Compact b → IO (Compact a)

mkCompact simply creates a new region and returns a dummy
pointer Compact () to identify the region. appendCompact, like
newCompact, fully evaluates a; however, it copies the result into the
same compact region as Compact b. Additionally, it short-circuits

Compact
Region

x :: [Int] c :: Compact [Int]

appendCompact x c :: Compact [Int]

12

1

2

0

Figure 1: Appending a list of (unboxed) integers into a compact
region. The white boxes are the newly allocated objects in the
region after the append which share a tail with the original list.

the evaluation/copying process if a subgraph is already in the tar-
get compact region. (The actual heap object Compact b points to is
otherwise ignored.) Figure 1 gives an example of appending some
cells of a list to a compact region; in this example, both a and b are
the same type—however, this need not necessarily be the case.

While one could quibble with the particular interface provided
(perhaps compact regions should be distinguished from compact
pointers), the above interface is sufficient for all compactions.
However, beyond this core interface, one will need to provide sup-
port for sending Compact a values over the network, e.g.:

sendCompact :: Socket → Compact a → IO ()

as in this example:

do c ← newCompact (buildTree x)
sendCompact sock c

(Un)observable sharing Interestingly, you cannot observe shar-
ing of Haskell values with just mkCompact and appendCompact. In
particular, if we ignore performance, we could implement observ-
ably equivalent pure versions of these functions in the following
way (where deepseq is a method in NFData which evaluates its first
argument to normal form when the second argument is forced):

newtype Compact a = Compact a
mkCompact = Compact ()
appendCompact x _ = deepseq x (Compact x)

Of course, the (useful) function which tests if an arbitrary value
lives in a compact region does permit observing the presence of
sharing:

isCompact :: a → IO (Maybe (Compact a))

3.1 Region Invariants
The Compactable type class enforces some important safety invari-
ants on the data which lives in a compact region:

• No outgoing pointers. Objects are copied completely into the
compact region, so there are never any outgoing pointers. This
is useful when transmitting a region over the network, as we
know that if we send an entire region, it is self-contained. We
will also rely on this invariant in garbage collection (described
in more detail in Section 4): this invariant means it is not
necessary to trace the inside of a region to determine liveness
of other objects on the heap. Compacted objects are essentially
a single array-of-bits heap object.

• Immutability. No mutable objects are permitted to be put in a
compact region. This helps enforce the invariant of no outgoing
pointers, and also means that data in a region can be copied with
impunity.
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• No thunks. Thunks are evaluated prior to being copied into a
region; this means the CNF will not change layout, be mutated,
or expand as a result of accessing its contents, and that we do
not attempt to send closures over the network.

Haskell has especially good support for immutable data, which
makes these restrictions reasonable for compact regions. While
many languages now host libraries of purely functional, persistent
data structures, in Haskell these are used heavily in virtually every
program, and we can reasonably expect most structures will be
Compactable.

3.2 Sharing
Because every compact region represents a contiguous region of
objects, any given object can only belong to at most one compact
region. This constraint has implications on the sharing behavior
of this interface. Here are three examples which highlight this
situation:

Sharing already compact subgraphs Consider this program:

do c ← mkCompact
r1 ← appendCompact [3,2,1] c
r2 ← appendCompact (4:getCompact r1) c
-- Are ’tail r2’ and r1 shared?

In the second appendCompact, we are adding the list [4,3,2,1].
However, the sublist [3,2,1] is already in the same compact re-
gion: thus, it can be shared.

However, suppose r1 is in a different compact, as here:

do c1 ← mkCompact
r1 ← appendCompact [3,2,1] c1
c2 ← mkCompact
r2 ← appendCompact (4:getCompact r1) c2
-- Are ’tail r2’ and r1 shared?

In this case, sharing would violate the compact region invariant.
Instead, we must recopy r1 into the new compact region. The
copying behavior here makes it clear why, semantically, it doesn’t
make sense to allow mutable data in compact regions.

Sharing non-compact subgraphs We stated that if if a subgraph
is already compact, it can be shared. What if the subgraph is not
compact?

do let s = [2,1]
d = (3:s, 4:s)

c ← mkCompact
r ← appendCompact d
-- Are ’tail (fst r)’ and ’tail (snd r)’ shared?

In an ideal world, the sharing present in d would be preserved
in the compact region. However, for reasons we will describe in
Section 4.3, we can more efficiently implement copying if we don’t
preserve sharing. Thus, by default, we do not preserve sharing
of non-compact subgraphs; however, a user may optionally use a
slower API to preserve sharing.

Sharing after append Consider the following program, where t

is a thunk whose type is compactable:

do c ← mkCompact
r ← appendCompact t c
-- Are t and r shared?

The process of appending t to c caused it to be fully evaluated;
furthermore, r refers to the fully evaluated version of this data
structure which lives in the compact region. Is t updated to also
point to this data structure?

In some cases, it is not possible to achieve this sharing: if t is a
reference to a fully evaluated structure in different compact, it must

e ::=
lit Literal

| f ai
i Application

| x Variable
| K ai

i Constructor
| case e ofKi a → ei

i
Pattern match

| let x = rhs in e Let binding
| mkCompact
| appendCompact x y

rhs ::= Right-hand sides
λ xi

i .e Function
| �e� Thunk
| K ai

i Constructor

Figure 2: Syntax for simplified STG

be copied to the new compact region. Additionally, if t had already
been fully evaluated, it’s not possible to “modify” the result to point
to the version in the new compact region. Thus, to make sharing
behavior more predictable and indifferent to evaluation order, we
decided t should never be updated to point to the version of the
data structure in the compact.

Semantics We can be completely precise about the sharing prop-
erties of this interface by describing a big-step semantics for our
combinators in the style of Launchbury’s natural semantics [18].
To keep things concrete, we work with the specific intermediate
language used by GHC called STG [15], which also supports data
constructors. The syntax STG plus our combinators is described
in Figure 2, with metavariables f and x representing variables, K
representing constructors, and a representing either a literal or vari-
able. STG is an untyped lambda calculus which has the same re-
striction as Launchbury natural semantics that all arguments a to
function (and constructor) applications must either be a literal or
a variable. This makes it easy to model the heap as a graph (with
variables representing pointers); thus, sharing behavior can be de-
scribed.

The basic transition in a big-step semantics is Γ : e ⇓ Γ� : a:
an expression e with heap Γ reduces to a value or literal with
new heap Γ�. The semantics for the standard constructs in STG
are completely standard, so we omit them; however, there is one
important difference about Γ: a heap may also contain labelled
bindings x c�→ v, indicating the value in question lives in a compact
region c. (Values in the normal heap implicitly have a special label
�). With this addition, the rules for the two combinators are then
quite simple:

c fresh x fresh

Γ : mkCompact ⇓ Γ[x
c�→ ()] : x

Γ : x ⇓ Δ : x � x � c�→ rhs in Δ Δ : y ⇓rnf
c Θ : y �

Γ : appendCompact x y ⇓ Θ : y �

The rule for appendCompact hides some complexity, as it needs
to recursively evaluate a data structure to normal form. We can
express this process with a specialized evaluation rule Γ : e ⇓rnf

c

Γ� : a, which indicates e should be fully evaluated and the result
copied into the compact region c, where a points to the root of the
copied result. The “reduce to normal form” operation (rnf) has only
three rules:
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Γ : e ⇓ Γ� : z � Γ� : z � ⇓rnf
c Γ�� : z ��

Γ : e ⇓rnf
c Γ�� : z �� EVAL

x
c�→ v in Γ

Γ : x ⇓rnf
c Γ : x

SHORTCUT

x
c��→ K yi

i in Γ0 Γi : yi ⇓rnf
c Γi+1 : zi

i

Γ0 : x ⇓rnf
c Γn [z

c�→ K zi i ] : z (z fresh)
CONRECURSE

First, if data pointed to by x is not fully evaluated, we evaluate
it first using the standard reduction rules (EVAL). Otherwise, if we
are attempting to rnf a variable into c (SHORTCUT), but it already
lives in that region, then nothing more is to be done. Otherwise,
x already points to a constructor in weak head normal form but
in a different region c� (CONRECURSE), so we recursively rnf the
arguments to the constructor, and then allocate the constructor into
the compact region c.

It is easy to show by induction that compact region invariant is
preserved by these evaluation rules:

INVARIANT 1 (Compact region invariant). For any heap binding
x

c�→ v in Γ where c is not �, v is a constructor K ai
i such that for

each non-literal variable ai, ai
c�→ vi is in Γ.

THEOREM 1 (Preservation). If the compact invariant holds on Γ,
and Γ : e ⇓ Γ� : z �, then the compact invariant holds on Γ�.

4. Implementation
4.1 The GHC Runtime System
We first review some details of GHC runtime system. Readers
already familiar with GHC’s internals can safely skip to the next
subsection.

Block-structured heap In GHC, the heap is divided in blocks of
contiguous memory in multiples of 4KB. [21] The smallest block
size is 4KB, but larger blocks can be allocated to hold objects
which are larger than 4KB. Blocks are chained together in order
to form regions of the heap, e.g. the generations associated with
generational garbage collection.

In memory, blocks are part of aligned megablocks of one
megabyte in size. These megablocks are the unit of allocation from
the OS, and the first few blocks in each megablock are reserved for
the block descriptors, fixed size structures containing metadata for
one block in the same megablock. Because of this organization it
is possible to switch between a block and a block descriptor using
simple pointer arithmetic. Block descriptors contain information
such as how large a block is (in case it holds an object larger than
four kilobytes) and what portion of the block is in use.

This block structure gives the GHC runtime system the property
that given an arbitrary pointer into the heap, it is possible in some
cases to verify in constant time in what object it lives, and that
property is exploited by our implementation to efficiently test if an
object already lives in a compact region.

Layout of objects in the heap Since the in-memory representa-
tion of objects is what will be transmitted on the network, it is
worth explaining how GHC lays out objects in memory. Objects
are represented by a machine size info pointer followed by the pay-
load of the object (numeric data and pointers to other object, in an
order which depends on the object type).

The info pointer points to an info table, a static piece of data and
code that uniquely identifies the representation of the object and the
GC layout. In case of functions, thunks and stack continuations, it

holds also the actual executable code, while for ADTs it contains an
identifier for the constructor which is used to discriminate different
objects in case expressions.

It is important to note that info tables are stored along side
the machine code in the executable and never change or move for
the lifetime of the process. Moreover, in case of static linking, or
dynamic linking without address space layout randomization, they
are also consistent between different runs of the same binary. This
means that no adjustment to info pointers is necessary when the
same binary is used.

4.2 Compact Regions
Conceptually, a compact region is a mutable object in which other
objects can be added using the appendCompact operation. Opera-
tionally, a region is represented as a chain of blocks (hopefully one
block long!) Each block of a compact region has a metadata header
(in addition to the block descriptor associated with the block),
which contains a pointer to the next and to the first block in the
chain. Additionally, the first block of a compact region contains a
tag which identifies the machine from which the data originated
(the purpose of which is explained later in the section).

It is interesting to observe therefore that a compact region can be
thought of as a heap object in itself: it can be treated as a linked list
of opaque bytestrings which do not have to be traced. At the same
time, the compact region internally contains other objects which
can be directly addressed from outside.

Garbage collection Usually in a garbage collected language, it is
unsafe to address component parts of an object known to the GC,
because there is no way for the GC to identify the container of the
component and mark it as reachable as well.

Nevertheless, for compacts this property is achievable: given
an arbitrary address in the heap, we can find the associated block
descriptor and use the information stored there to verify in constant
time if the pointer refers to an object in a compact storage. If it
does, we mark the entirety of the compact region as alive, and don’t
bother tracing its contents. This test can be used by user code to
check if an object is already a member of a compact, or even if it is
just in normal form (so a deepseq can be omitted).

Skipping tracing of the insides of compact regions has one im-
plication: if a single object in a compact region is live, all objects in
a compact region are live. This approximation can result in wasted
space, as objects which become dead cannot be reclaimed. How-
ever, there a few major benefits to this approximation. First, long-
lived data structures can be placed in a compact region to exclude
them from garbage collection. Second, the avoidance of garbage
collection means that, even in a system with copying garbage col-
lection, the heap addresses of objects in the region are stable and
do not change. Thus, compact regions serve as an alternate way of
providing FFI access to Haskell objects. Finally, a “garbage col-
lection” can be requested simply by copying the data into a new
compact region, in the same manner a copying garbage collector
proceeds.

4.3 Appending Data to a Compact Region
As we’ve described, the process of appending data to a compact
region is essentially a copy, short-circuiting when we encounter
data which already lives in the compact region. However, we can
avoid needing to perform this copy recursively by applying the
same trick as in Cheney copying collection: the compact region
also serves as the queue of pending objects which must be scanned
and copied.

If copying would cause the block to overflow, a new block is
allocated and appended to the chain, and copying then proceeds
in the next block. The size of the appended block is a tunable
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parameter; in our current implementation, it is the same size as the
previous block.

Preserving sharing while copying Suppose that we are copying
a list into a compact region, where every element of the list points
to the same object: the elements are all shared. In a normal copying
garbage collector, the first time the object is copied to the new
region, the original location would be replaced with a forwarding
pointer, which indicates that the object had already been copied to
some location.

However, in our case, we can’t apply this trick, because there
may be other threads of execution running with access to the orig-
inal object. Initially, we attempted to preserve sharing in this situ-
ation by using a hash table, tracking the association of old objects
and their copies in the compact region. Unfortunately, this incurred
a significant slow-down (between ×1.5 and ×2).

Thus, our default implementation does not preserve sharing for
objects which are not already in a compact region. (Indeed, this
fact is implied by the semantics we have given.) Thanks to the fact
that only immutable data is copied in this way, this duplication is
semantically invisible to the application code, although memory
requirements can in the worst case become exponential, and struc-
tures containing cycles cannot be handled by this API.

While it may seem like this is a major problem, we can still pre-
serve sharing for data structures whose shared components already
live in a compact region. In this case, when we take a data structure
already in a compact region, apply some functional update to it,
and append the result to it, the shared components of the new data
structure continue to be shared. We believe internal sharing which
does not arise from this process is less common, especially in data
which is to be sent over the network.

Trusted Compactable instances The Compactable type class
serves two purposes: first, it describes how to evaluate data to nor-
mal form while short-circuiting data which is already in normal
form (the existing type class NFData always traverses the entirety
of an object), and second, it enforces the safety invariant that no
mutable objects be placed in a compact region.

Unfortunately, because Compactable type classes are user de-
finable, a bad instance could lead in the type checker accepting a
copy of an impermissible type. Currently, our implementation ad-
ditionally does a runtime check to ensure the object fulfills the in-
variants. Ideally, however, a Compactable would only be furnished
via trusted instances provided by GHC, in a similar fashion to the
existing Typeable. [17]

4.4 Network Communication
Once your data is in a compact region, you can use any standard
techniques for sending buffers over the network. However, there are
some complications, especially regarding pointers which are in the
compact region, so for the sake of explicitness (and to help explain
the experimental setups in the next section), we describe the details
here.

Serialization A compact region is simply a list of blocks: thus,
the serialization of a compact region is each block (and its length),
as well as a pointer to the root of the data structure that is the root.
The API we provide is agnostic to the particular network transport
to be used:

data SerializedCompact a = S {
blockList :: [(Ptr a, Word)],
root :: Ptr a

}

withCompactPtrs :: Compact a
→ (SerializedCompact a → IO b)
→ IO b

importCompact :: SerializedCompact a
→ (Ptr b → Word → IO ())
→ IO (Compact a)

The two functions operate in pair: withCompactPtrs accepts a
function SerializedCompact a →IO b that should write the data
described by the SerializedCompact to the communication chan-
nel. Conversely, importCompact takes care of reserving space in the
heap for the compact region using the SerializedCompact (trans-
mitted out of band as simple address/size pairs), then calls the pro-
vided function Ptr b →Word →IO () for each piece of reserved
space: this function receives the data and places it at this address.

One property of this design is that the SerializedCompact,
containing the addresses of blocks on the originating machine, must
be sent in full through an out of band channel. This is to give a
chance to the runtime system to allocate the blocks on the receiving
machine at the right addresses from the start, which is necessary to
allow full zero-copy transfer in a RDMA scenario.

Pointer adjustment If the data associated with a compact region
is not loaded into the same address as its original address, it is
necessary to offset all of the internal pointers so that they point
to the new address of the data in question. This procedure can be
skipped if the sender is trusted and the compact region is loaded to
its original address.

To ensure that we will be able to load compact regions into
the correct address space, we observe the address space in a 64-
bit architecture (or even a 48 bit one like x86 64) is fairly large,
more than the application will need. Therefore, our approach is to
divide it into n chunks (in our case, 256 chunks of 128 GiB each)
and assign each chunk to a specific machine/process combination.

Memory in these chunks is separated by the normal heap and
is used only for compact storage, which means that every machine
can have an approximate view of the contents of its assigned chunk
in all other machines. This is enough to greatly reduce the number
of collisions when attempting a directed allocation.

Unfortunately, this scheme is not guaranteed to work, as mem-
ory can be reused on the sender before it is reclaimed also on the
receiver, triggering a collision and a linear pointer adjustment. An
alternate design is to never reuse address space, simply unmapping
the address for old compacts when they become no longer reach-
able.

Interoperation with different binaries As mentioned above, info
tables for each object in a compact region are static and well-
defined for a given binary. This allows us to ignore the info pointers
inside the compact data, provided that the data originates from
another instance of the same executable on a compatible machine.
We verify this with an MD5 checksum of the binary and all loaded
shared libraries, which is included in the payload of every compact
sent on the wire and verified upon importing.

If this verification fails, the import code has to adjust the info
pointers of all objects contained in the imported storage. One option
to reconstruct the info pointers would be to send the info tables
together with the data. Unfortunately, the info tables are fairly large
objects, due to alignment and the presence of executable code,
which makes this option not viable in practice. Additionally, the
executable code can potentially make references to other pieces of
code in the runtime system.

Instead, we observed that every info table is identified by a
dynamic linker symbol which is accessible to the runtime. Thus,
we extended the compact storage format to contain a map from all
info table addresses to the symbol names, to be sent on the wire
with the data. This map is employed to obtain symbol names for
the transmitted info table pointers, which can then be linked against
their true locations in the new binary.
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-- Pointer-heavy data with more pointers than scalars.
-- Representative of boxed, linked datatype in Haskell,
-- such as lists.
data BinTree = Tree BinTree BinTree

| Leaf {-# UNPACK #-} !Int

-- Small-struct data, increasing to a handful of scalars.
-- Representative of custom datatypes for numeric
-- and computationally intensive problems.
data PointTree

= PTree PointTree PointTree
| PLeaf { x :: {-# UNPACK #-} !Int64

, y :: {-# UNPACK #-} !Int64
, z :: {-# UNPACK #-} !Int64
, mass :: {-# UNPACK #-} !Int64
}

-- Small-array data, with small, unboxed strings.
data TweetMetaData =

TweetMetaData { hashtags :: ![Text]
, user_id :: {-# UNPACK #-} !Int64
, urls :: ![Text]
}

Figure 3: Our three representative data types for studying data
transfer and storage. We do not cover large unboxed array data,
because these types are already handled well by existing memory
management and network transfer strategies.

Because this mapping incurs some overhead, we allow program-
mers to chose whether or not to pay this cost for more safety. On
the other hand, we can cache the mapping on the receiver side, so
if the types and data constructors of the values sent do not change,
the setup cost needs to be paid only for the first message sent.

5. Evaluation
In this section, we characterize the performance of compact normal
forms by looking both at serialization and memory footprint costs,
as well as end-to-end numbers involving network transmission,
garbage collections and a key-value store case-study. The details
of the experiments are in the upcoming subsections, but we first
spend some time to describe our experimental setup.

We compare against the latest versions of the Haskell binary
(which operates on lazy bytestring streams) and cereal (which op-
erates on fully evaluated bytestrings). We also compared against the
builtin Java serialization engine (java.io.Serializable) shipped
with Java HotSpot version 1.8.0 31, as a sanity check to ensure
Haskell has reasonable performance to start with—we are not
merely making slow programs less slow, nor are we addressing
a Haskell specific problem.

There are a variety of different types which we could serialize
and deserialize. In our experiments, we used two variants of bal-
anced binary trees with different pointer/total size ratios, varying
sizes in power of two. In particular:

• bintree is a binary tree with a single unboxed integer in leaves.
This variant has high pointer/total size ratio, and thus represents
a worst case scenario for transmitting compact normal forms.

• pointtree is a binary tree with four unboxed integers in leaves,
increasing the data density.

Additionally, we also analyzed a third data type, composed of
URLs, hashtags and user IDs for all posts in Twitter in the month
of November 2012 [22, 23].
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Figure 4: Relative improvement for serializing a bintree of size
2N with CNFs versus other methods. Both x and y scales are
logarithmic; bigger is better for CNF (and worse for the serializer
being compared.) Compact/Share refers to the implementation of
compact regions which preserves internal sharing, showing the
overhead of the hash table.

Our experiments were done on a 16-node Dell PowerEdge
R720 cluster. Each node is equipped with two 2.6GHz Intel Xeon
E5-2670 processors with 8-cores each (16 cores in total), and
32GB memory each. For the network benchmarks over sockets,
we used the 10G Ethernet network connected to a Dell PowerCon-
nect 8024F switch. Nodes run Ubuntu Linux 12.04.5 with kernel
version 3.2.0.

5.1 Serialization Costs
Our first evaluation compares the cost of serializing data into a re-
gion, as well as the resulting space usage of the serialized versions.
We don’t include deserialization in this benchmark, because de-
serialization costs can often be pipelined with network transmis-
sion, making serialization a more representative quantity to mea-
sure. However, deserialization does add some overhead, which will
be measured in the end-to-end latency benchmarks in the next sec-
tion.

In Figure 4, we see a plot comparing serialization times for
binary trees which store an integer at each node; some absolute
values are also shown in Table ??. We can see that for sizes up
to 26, constant factors dominate the creation of compact normal
forms (it takes about 1.5ns to create a compact region); however,
at larger sizes copying is four times faster than serializing. Beyond
212 leaves, binary and cereal slow down a factor of four due to
garbage collection overhead; by increasing the amount of memory
available to GHC, this slowdown can be reduced but not eliminated.

The graph for pointtree was comparable, and for Twitter the
serialization overhead was consistently ×5 for binary and between
×4 and ×9 for Java.

5.2 Memory Overhead
In Table 2, we report the sizes of the various serialized representa-
tions of large versions of our data types; these ratios are represen-
tative of the asymptotic difference.

We see that in the worst case, the native in-memory represen-
tation can represent a ×4 space blow-up. This is because a seri-
alization usually elides pointers by inlining data into the stream;
furthermore tags for values are encoded in bytes rather than words.
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Table 1: Median latency for serialization with CNFs versus serial-
ization with Haskell binary and Java, for the bintree data structure.

Size Compact Binary Java
223 leaves 0.322 s 6.929 s 12.72 s
220 leaves 38.18 ms 0.837 s 1.222 s
217 leaves 4.460 ms 104.1 ms 109 ms
214 leaves 570 ns 8.38 ms 9.28 ms
211 leaves 72.4 ns 255 ns 1.13 ms

Table 2: Serialized sizes of the selected datatypes using different
methods.

Method Type Value Size MBytes Ratio
Compact bintree 223 leaves 320 1.00
Binary 80 0.25
Cereal 80 0.25
Java 160 0.50

Compact pointtree 223 leaves 512.01 1.00
Binary 272 0.53
Cereal 272 0.53
Java 400 0.78

Compact twitter 1024MB 3527.97 1.00
Binary 897.25 0.25
Cereal 897.25 0.25
Java 978.15 0.28
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Figure 5: Relative improvement for median end-to-end latency for
socket communication with CNFs versus serialization by Haskell
binary and Java, for two different data structures bintree and point-
tree. Both x and y scales are logarithmic; bigger is better for CNF
(and worse for the serializer being compared.) At small sizes, con-
stant factors of CNFs dominate.

However, as the raw data increases, our ratios do get better. Inter-
estingly, the Twitter data achieves a relatively poor ratio: this is in
part because most of the strings in this data are quite small.

The difference in memory size sets the stage for the next set of
experiments on network transfer latency.

5.3 Heap-to-Heap Network Transfer
Given that the size of data to be transmitted increases, the real ques-
tion is whether or not the end-to-end performance of transmitting a

Table 3: Median end-to-end latency for socket communication with
CNFs versus serialization by Haskell binary and Java, for the dif-
ferent data structures bintree and pointtree.

Type Size Compact Binary Java
bintree 223 leaves 3.180 s 6.98 s 9.595 s

220 leaves 382.4 ms 982 ms 837 ms
217 leaves 59.93 ms 100 ms 90 ms
214 leaves 8.380 ms 10.54 ms 11 ms
211 leaves 1.833 ms 1.238 ms 2 ms

pointtree 223 leaves 4.978 s 23.58 s 15.71 s
220 leaves 624.0 ms 2.64 s 1.461 s
217 leaves 81.31 ms 321 ms 141 ms
214 leaves 13.3 ms 37.1 ms 35 ms
211 leaves 2.6 ms 4.33 ms 3 ms

heap object from one heap to another is improved by use of a com-
pact normal form. With a fast network, we expect to have some
slack: on a 1 Gbit connection, an extra 240 megabytes for a 223

size binary tree costs us an extra 2.01 seconds; if serializing takes
6.92 seconds, we can easily make up for the slack (and things are
better as more bandwidth is available).

Figure 5 shows the relative improvement for the end-to-end
latency compact normal forms achieve relative to existing solutions
for binary and Java. (We don’t test cereal, as it does not support
pipelining deserialization.) We see that for low tree sizes, constant
factors and the overall round trip time of the network dominate;
however, as data gets larger serialization cost dominates and our
network performance improves.

5.4 Persistence: Memory-Mapped Files
While communicating messages between machines is the main use
case we’ve discussed, it’s also important to send messages through
time, rather than space, by writing them to disk. In particular, not
all on-disk storage is meant for archival purposes—sometimes it
is transient, for caching purposes or communicating data between
phases of an application. In Map-Reduce jobs, data is written out
between rounds. Or in rendering pipelines used by movie studies,
all geometry and character data is generated and written to disk
from an earlier phase of the pipeline, and then repeatedly shaded in
a later stage of the pipeline. For these use cases, storing in Compact
format directly on disk is a feasible alternative.

Here we consider a scenario where we want to process the
twitter data set discussed previously. The original data-set is stored
on-disk in JSON format, so the natural way to process it would be to
read that JSON. For this purpose, the standard approach in Haskell
would use the efficient Aeson library1. We use Data.Aeson.TH to
derive instances which parse the on-disk format to the in-memory
format shown in Figure 3.

The first scenario we consider requires reading full dataset
through memory, in particular we count how many occurrences
of the “cat” hashtag occur in the dataset, while we vary the size
of the dataset read from 1MB to 1024MB. “Aeson/all” in Figure 6
shows the result. Reading the full gigabyte takes substantial time—
55 seconds. “Compact/all” shows an alternative strategy. We cache
a Compact representation on disk, using a format where each block
is a separate file. We can then mmap these blocks directly into
RAM upon loading, and allow the OS to perform demand paging

1 https://hackage.haskell.org/package/aeson
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Figure 6: Time spent to load N megabytes of Twitter metadata
to access respectively one item at random or process all items
sequentially, when loading the JSON directly with Aeson compared
to loading a preprocessed Compact file from disk.

whenever we access the data. At the full 1GB size, this approach is
21.3× faster than using Aeson to load the data.2

Finally, we also consider a sparse data access strategy. What if
we want to read a specific tweet from the middle of the data set?
This scenario measured in the “/one” variants of Figure 6. Here, we
still map the entire Compact into memory. But the OS only needs
to load data for the specific segments we access, no matter where
they fall. As a result Compact/one still increases linearly (time for
system calls to map O(N) blocks), but the gap widens substantially
between it and Aeson/one. The traditional parsing approach must
parse half of the data set to reach the middle, resulting in 26.6
seconds to access a tweet in the middle of the 1GB dataset, rather
than 0.26 seconds for Compact.

5.5 Garbage Collection Performance
One of the stated benefits of compact normal forms is that objects in
a compact region do not have to be traced. Unfortunately, we cannot
in general give an expected wall clock improvement, since the
specific benefit in an application depends on what data is converted
to live in a compact region. Additionally, not all data is suitable
for placement in a compact region: if a data structure is rapidly
changing compact regions will waste a lot of memory storing dead
data.

To give a sense of what kinds of improvements you might
see, we constructed a few synthetic benchmarks based on patterns
we’ve seen in workloads where garbage collector performance is
influential:

• p threads concurrently allocate a list of elements into a compact
region. This is a baseline showing the best-case improvement,
since no elements become dead when a new cell is consed onto
a list.

• p threads concurrently allocate a list of elements, but rooted in
a single vector. This is meant to illustrate an example where
adding a compact region could help a lot, since GHC’s existing
parallel garbage collector scales poorly when the initial roots
are not distributed across threads.

2 We were not able to disable disk-caching on the evaluation platform
(requiring root access), but we report the median result of 5 trials for all
data points.
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ing a generational algorithm, the effect of major GCs is so promi-
nent in normal Haskell that only a small fraction of time is spent in
the real computation.

In all of these experiments, the data allocated by each thread
is kept live until the end of the test run, simulating immortal data
which is allocated but never freed.

In Figure 7 we can see the improvement in median running
time for these two experiments when the operations happen for a
list that lives in a compact region as opposed to the normal heap,
while in Figure 8 we can observe the influence of GC in the overall
time, which is greatly reduced in the compact case, allowing a more
efficient use of resources.

One observation from these experiments is that it is important
that the most or all of the existing compact data structure is reused
by the mutator — otherwise, the excessive copies into the compact
region of soon to be unused data become predominant in the total
cost.

Additionally, because copying into Compact counts as alloca-
tion, this double allocation factor introduces memory pressure that
triggers more garbage collections: while GC is faster in presence of
compact regions, minor collections have to trace the new temporary
objects that are allocated prior to copying into the compact region,
and that is an added cost if the objects are short lived.
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One way to overcome this limitation is to copy the data into
a new compact region after a certain number of updates, just like
a copying GC would do, such that the amount of unused values
is always limited. In our current implementation this is a manual
process and relies on the programmer to know the space complexity
of the data structure being updated as well as the access patterns
from the application (possibly with the help of profiling), but future
work could explore efficient heuristics to automate this.

Conversely, it may be interesting to observe that because the
GC does not trace the internals of compacts, the GC pauses are
less dependent on the layout of the data in memory and how it was
computed, making them not only shorter but also more predictable
for environments with latency constraints.

5.6 Zero-copy Network Transfer using RDMA
High-performance computing environments—as well as large data
centers—typically are comprised of tightly-coupled machines net-
worked using low-latency, high-throughput, switched fabrics such
as Infiniband or high-speed Ethernet. Remote Direct Memory Ac-
cess (RDMA) enables a source machine to remotely access a desti-
nation machine’s memory without any active participation from the
latter. In essence, RDMA decouples data movement from synchro-
nization in communication between hosts. RDMA-enabled net-
work hardware is set up to access a remote processor’s memory
without involving the operating system on either end. This elim-
inates synchronization overheads and multiple redundant copies,
achieving the lowest possible latency for data movement.

The promise of fast, low-latency RDMA communication, how-
ever, is often thwarted by pragmatic issues such as explicit buffer
management and synchronization, and the fact that RDMA APIs
are low-level and verbose to program with. In contemporary
RDMA networking hardware, a host application is required to pin
the memory that it wants to expose for transfers. The operating sys-
tem populates page table entries (PTE) associated with this pinned
buffer such that all subsequent accesses to memory bypass the OS
(the Network Interface Card (NIC) can directly DMA to or from
the locked memory). Further, a source machine requires a handle
to the remote memory that it wants to access. Thus, there is often
a rendezvous required between peers before they can communicate
with each other.

Modern high-performance communication libraries offer sev-
eral features built on top of the raw RDMA API to ease mes-
sage passing over the network. Each peer reserves pre-pinned ring
buffers for every other peer, which are used for transferring small
messages. A peer maintains an approximate pointer into a eager
ring buffer which is used as an index into remote memory. When a
peer suspects that it might overflow the remote buffer, it reclaims
space by synchronizing with the remote peer. Large messages are
sent by sending a handle to the memory, and requesting the tar-
get to get the memory associated with the handle. In addition to
raw remote memory access (RMA), message passing libraries also
provide a RPC mechanism for invoking handlers on the transferred
remote data.

We have already discussed the interaction of CNFs with net-
work communication, and demonstrated the claimed performance
improvements in Section 5.3. Here we consider true zero-copy
transfer of heap objects between two networked machines. The two
cases that we evaluated are shown in Figures 9a and 9b.

Consider a case where a client wants to send a pointer-based
data structure to the server. With RDMA, the client needs to know
where to put the data in the server’s memory. In the approach
demonstrated in Figure 9a that we refer to as the eager (push-
based) protocol, the server sends a handle to a pinned region in its
memory per a client’s request. The client has to serialize the data
structure into a contiguous memory region if the structure is not in

 0.001

 0.01

 0.1

 1

 10

 100

2^10 2^12 2^14 2^16 2^18 2^202^222^24

M
e
d

ia
n
ti

m
e
 i
n
 s

e
co

n
d
s 

(l
o
g

)

Number of leaves

Zero-copy/Binary
Zero-copy/Compact

Binary
Compact

Figure 10: Median time it takes to send a bintree of varying tree
depths from a client to the server using RDMA. At depth=26, it
takes 48s to serialize, send and deserialize a 640MB Binary tree
(for a throughput of 13MB/s), whereas it takes 16s for a 2.5GB
Compact tree (for a throughput of 160MB/s).

CNF. The client puts into remote memory and notifies the server
of completion. All of the protocol messages are exchanged over
a control channel also implemented on top of RDMA using eager
ring buffers. Finally, the server deserializes the received structure
incurring an extra copy and the penalty of fixing up internal point-
ers if the structure is in CNF.

In the rendezvous (pull-based) zero-copy case shown in Figure
9b, both client and server applications use the striped allocation
scheme described earlier. The client has a fixed symmetric memory
region (stripe) corresponding to the client in it’s virtual address
space. The client sends the metadata of the structure (pointer to
all of the blocks) that it wants to send to the server. In the normal
case, this would mean pinning each node in the tree and sending
its address to the server. Fortunately, for us, a Compact is internally
represented as a list of large blocks, and thus incurs significantly
lower metadata exchange overhead. The server finally gets all of
the blocks directly into the right addresses eliminating the need for
any extraneous copies. Essentially, with this scheme, we turn all of
the RDMA puts into gets, and eliminate an additional round-trip
between the client and server.

The RDMA benchmarks were run over the 40Gbps QDR In-
finiband interconnect through a Mellanox ConnectX-3 EN HCA.
For these experiments, we used the Common Communication In-
terface (CCI)3 RDMA library over Infiniband. We varied the depth
of the tree and its data type as in the previous sections. Both pro-
tocols discussed above were implemented and the median time of
each phase: tree generation, serialization, communication, deserial-
ization was measured. At higher tree depths, the metadata for each
tree is several MBs, which bogs down the ring-buffer based control
channel. We implemented the metadata exchange through a pre-
pinned metadata segment (as discussed in the Eager scheme) for
both protocols.

As shown in Figure 10, we see up to 5x speedup with Compact

over Binary due entirely to the elimination of serialization over-
head even when Compact has to transfer up to 5 times more data.
However, we found that the time for deserialization of Binary was
lower than the time required to fixup pointers for Compact.

The volume of data transfer is more in the zero-copy case as
clients need to exchange metadata with the server. Furthermore,
the size of each message is restricted by the maximum block size
in the Compact. However at larger message sizes, we still expect to

3 http://cci-forum.com/
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(a) Eager (push-based) RDMA protocol. Here the client wants to send
a tree data structure to the server. This approach eliminates the initial
rendezvous before communication at the expense of copying into a
pre-pinned region on the server.
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(b) Rendezvous (pull-based) RDMA protocol. This is the zero-copy
case where the client sends metadata of the tree to the server. The
server pulls data using remote read into a stripe that it has reserved for
the client so that no pointer fixups are required.

Figure 9: The two RDMA data transfer schemes that were used for sending a tree from a client to the server.
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Table 4: Requests handled by server for varying database sizes. The
size corresponds to the space used by values in the Haskell heap.

Keys DB size Binary Compact
100 6.56 MB 17,081 69,570

1,000 65.6 MB 15,771 63,285
10,000 656 MB 15,295 57,008

see performance improvements for zero-copy over the push variant
for two reasons: first, an extra copy is eliminated and secondly, for
large messages the cost of deserialization trumps the cost of addi-
tional data transfer. Figure 11 confirms our hypothesis. For Binary,
we mostly see a slowdown except for tree depths above 25 as the
cost of deserialization is never amortized by the additional com-
munication penalty, whereas we see Compact do better at modest
sizes as it avoids both copying and deserialization overheads. The
communication throughput can further reduced for the zero-copy
protocol by utilizing scatter/gather features available in modern In-
finiband network hardware that provides vectorized data transfer
between hosts.

5.7 Case Study: In-Memory Key-Value Store
We implemented a simple in-memory key-value store in Haskell,
using compact regions to store values. Remote clients make re-

quests upon the server to fetch the value at a given key. One pos-
sible implementation might store the table in a of map from Key

ByteString, where the ByteString represents the serialized pay-
load which should be sent in response. However, this is only work-
able if the server will only service fetch requests—the original val-
ues would be gone from memory, and could only be retrieved by
deserializing the ByteString values. Of course, this deserialization
is costly and doesn’t support small, incremental updates to the val-
ues in question.

Alternatively, the implementor could choose to store Map Key Val

directly, and opt to serialize on every fetch request. Leveraging
lazy evaluation, it would be an elegant optimization to instead store
Map Key (Val,ByteString), where the ByteString field is a thunk
and is computed (and memoized) only if it is fetched by a client.
Yet this option has its own drawbacks. The ByteString still needs
to be recomputed in whole for any small modification of Val, and,
further, the entire in-memory store now uses up to twice as much
resident memory!

Using Compacts can improve both these problems, while keep-
ing GC pressure low. If we store a Map Key (Compact Val) then (1)
the value is ready to send at any point, (2) we are able to incremen-
tally add to the compact without recreating it, and (3) the values
are always in a “live” state where they support random access at
any point within the Compact.

To test this approach, we built a TCP based server running
on our evaluation platform. We evaluate this server in terms of
client requests per second, using fixed-size values on each request
(pointtree of depth 10, size 65.6KB). We use 16 client processes,
each launching requests in a sequential loop, to saturate the server
with as many requests as the 10G Ethernet network supports. In
Table 4, we show how varying the size of the in-memory database
changes request handling throughput, by changing the behavior of
the memory system. Here we compare our Compact-based server
against the Map Key Val solution, again using the Binary package
for serializing Val, showing an increased throughput across a range
of in-memory key-value store sizes.

6. Related Work
The idea of reusing an in-memory representation for network and
disk communication originates from the very beginning of comput-
ing. It was common for old file formats to involve direct copies of
in-memory data structures [24, 25, 29], in order to avoid spending
CPU cycles serializing and deserializing in a resource constrained
environment. More recently, libraries like Cap’n Proto [31] advo-
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cate in-memory representations as a general purpose binary net-
work interchange format.

These applications and libraries are almost universally imple-
mented in languages with manual memory management. How-
ever, there are some shared implementation considerations between
these applications and compact normal forms. The literature on
pointer swizzling [16, 32], for example, considers how pointers
should be represented on disk. The idea of guaranteeing a struc-
ture is mapped to the same address occurs in many other sys-
tems. [5, 6, 28]

On the other hand, it is far less common to see this technique
applied in garbage collected languages. One common mode of
operation was to save the entire heap to disk in an image, so that it
could be reloaded quickly; schemes like this were implemented in
Chez Scheme and Smalltalk. Our goal was to allow manipulating
subsets of the heap in question.

The one system we are aware of which organizes heap objects
into regions in the same way is Expresso [9] for Java. Like our
system, Expresso allocates heap objects into contiguous chunks of
memory which can then be transmitted to other nodes. However,
while there are similarities in the underlying implementations, our
API is substantially safer: Expresso is implemented in a language
which supports mutation on all objects, which means that there is
no invariant guaranteeing that all pointers are internal to a compact
block. Compact Normal Forms do have this invariant, which means
we can optimize garbage collection and avoid dangling pointers.
Other systems [7] send the literal format but don’t try to maintain a
contiguous representation; thus a traversal is still necessary as part
of the serialization step.

Message passing in distributed computation There is a lot of
prior work in systems for distributed computation. The Message
Passing Interface (MPI) is the standard for message communication
in many languages, and emphasizes avoiding copying data struc-
tures. However, MPI assumes that data lives in a contiguous buffer
prior to sending: it is up to the high-level language to arrange for
this to be the case.

Message passing implementations in high-level languages like
Java and Haskell are more likely to have a serialization step. Ac-
cordingly, there has been some investigation on how to make this
serialization fast: Java RMI [27], for example, improved serializa-
tion overhead by optimizing the serialization format in question;
Scala Pickler [26] approaches the problem by statically generating
code to serialize each data structure in question. However, except
in the cases mentioned in the previous section, most serialization in
these languages doesn’t manage to achieve zero-copy.

It is worth comparing our API to existing message passing APIs
in distributed Haskell systems. Our approach is more in keeping
with previous systems like Eden [3], where the system offers built-
in support for serializing fully evaluated, non-closure data. Cloud
Haskell [10], on the other hand attempts to support the transmis-
sion of higher-level functions with a combination of extra language
techniques. Like Cloud Haskell, our system works best if identical
Haskell code is distributed to all nodes, although we can accommo-
date (with performance loss) differing executables.

Regions and garbage collection It is folklore [4] that in the ab-
sence of mutable data, generational garbage collection is very sim-
ple, as no mutable set must be maintained in order that a back-
wards pointer from the old generation to the new generation is
handled properly. In this sense, a compact region is simply a gen-
eralization of generational garbage collection to have arbitrarily
many tenured generations which are completely self-contained.
This scheme bears similarity to distributed heaps such as that in
Singularity [14], where each process has a local heap that can be
garbage collected individually. Of course, the behavior of data in

a compact region is much simpler than that of a general purpose
heap.

The idea of collecting related data into regions of the heap has
been explored in various systems, usually in order to improve data
locality. [1, 8, 11] At the static end of the spectrum, region sys-
tems [12, 30] seek to organize dynamically allocated data into re-
gions which can be freed based on static information, eliminating
the need for a tracing garbage collector. MLKit [13] combines re-
gion inference with tracing garbage collection; their garbage col-
lection algorithm for regions bears some similarities to ours; how-
ever, since we don’t trace data living in a region, our algorithm is
simpler at the cost of space wastage for objects in a compact region
which become dead—a tradeoff which is also familiar to region
systems.

7. Conclusions
In programming languages, abstraction is naturally sometimes at
odds with performance, especially with regards to garbage collec-
tion versus manual memory management. In this paper, we have
tried to show how compact regions can be a semantically simple
primitive that still brings good performance benefits to the table.
We believe this sort of region management may prove to be a prac-
tical compromise for managing heap layout, just as semi-explicit
parallelism annotations have proven a useful compromise.
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